Expanding Your Market
with Open Firmware

Greg Hill
Director of Marketing
FirmWorks
gregh@firmworks.com

Agenda

* Why Have Open Firmware
* What is Open Firmware

* The Good News -- The Benefits of Open
Firmware

 The Bad News -- The Costs of Open
Firmware

* Open Firmware Development Resources
e Conclusion

=<t

Who's On First?

* In a recent quarter, which computer vendor
had the largest market share?
— Apple with about 12%
— Compaq with about 12%
— IBM with about 12%
— All of the above

Who'’s On PCI with Open
Firmware?

» Apple with the Power Macintosh™
* IBM with PR*P (coming soon)
* Do you want a piece of the action?

Power Macintosh is a trademark of Apple Computer Inc.

What Problems Does Open
Firmware Solve?

* No Standards
— Proprietary Solutions
— Machine-dependent Interfaces
— Inconsistent User Interfaces
— Re-invention of the Wheel
» Ad Hoc Design
— Cumbersomel/inflexible OS Interfaces
— Weak Naming Structure

=<t

What Problems Does Open
Firmware Solve?

* No Open Systems Support

— Single-vendor boot/diagnostic support

— CPU dependencies

— Weak or nonexistent auto-configuration mechanisms
» Constrained environment

— Firmware environment can't depend on full machine
capabilities
— Meager debugging tool set
» Expensive to maintain and upgrade

=<t

The Open Firmware Response

* Unencumbered Public Specification (IEEE 1275-
1994)

— The interfaces are open and public - no fees, restrictions
or "contamination" concerns

— Companies may sell or license specific implementations
— Buy off-the-shelf or build from the spec -- your choice
» Designed for the long term
— Structured OS Interfaces
— Explicit reporting of resource utilization
— Unambiguous hierarchical naming structure
— Architected extensibility for future growth

=<t .

The Open Firmware Response

* Open Systems Orientation
— CPU-independent, bus-independent design

— Device name space supports arbitrary
combinations of different buses

— Architecture-neutral interfaces
— Multi-vendor booting, testing
e Auto-configuration Support

— "Plug and play" across different processors
with ONE driver

=<t s

The Open Firmware Response

» Debugging Facilities
— Standard Firmware-level Debug Interface
— Built-in interactive programming language
— Hardware, software, firmware, driver
debugging tools
» Field Patches, Upgrades
— Downloadable firmware extensions
— Extensions and patches in non-volatile RAM

=<t)

Open Firmware Interfaces

» Device Interface - plug-in “FCode” drivers

» User Interface - administration and debugging
» Client Interface - services for OS and loaders
* The 3 interfaces are separately optional

=<t "

Device Interface (FCode)

CPU Board Peripheral Board

Open
Firmware RAM Device
ROM Hardware

CPU

Standard Bus
» FCode interpreter/compiler runs on the main CPU

» FCode programs reside in PCI Expansion ROMs on
peripheral cards (can be stored elsewhere for some buses)

» During system start-up, Open Firmware “probes” the bus and
reads/interprets any FCode it finds

* Resulting driver used during start-up

=<t u

Device Interface (FCode)

* Interpreting/compiling an FCode program:
— Creates a device node with descriptive properties
— Creates device driver methods in RAM
— Initializes and tests the device

* The same FCode driver works with any CPU

* FCode drivers don't replace OS drivers
— OS drivers are complicated; FCode drivers are simple
— OS and loaders can use FCode drivers temporarily

=<t 2

Building the Device Tree

 Start with tree for built-in devices
For each occupied slot:
Create an empty device node
Interpret FCode for that board

(if the device is a bridge), recurse

For each occupied slot:
Create an empty device node
Interpret FCode for that board
(if the device is a bridge), recurse
(etc.)

13

e The Device Tree maps the hardware’s physical addressing
¢ The tree structure is the key to portability and extensibility

« Nodes with children are usually buses

* Nodes without children are usually individual devices

¢ Siblings are distinguished by name and by physical address

14

Device Node

parent

descriptive properties

driver methods
&

initialized data

child child child

* Properties - name,value pairs describing the
device

» Methods - driver procedures for the device

=<t s

Properties

Name,value pairs describing device characteristics

Some standard properties

— “name” Human-readable device name use
in paths

- “reg List of address ranges for registerg

— “interrupts” List of interrupt levels and/or
vectors

Some properties are class-dependent, e.g. “width”
Other device-dependent properties can be created
* PCI “binding” defines some PCI-specific properties

=<t .

Methods

Forth procedures for driving the device
Called by name - run-time binding

Some standard methods:
— “open” , “close” Start/stop using device

—“read” , “write” Input/Output
— “load” Load a program from the
device

Bus nodes provide mapping and DMA
methods their children can use

=<t

Client Program Interface

Allows the operating system (or OS loader) tp
use Open Firmware services

Device tree access (for OS auto-configuration)

— Select a device node
— Get and set property values

FCode driver access
— Console I/0
— Disk, tape, network (for secondary booters)

Memory allocation and mapping

=<t

User Interface

* Provides casual user access to:
— Booting commands
— Configuration variables
* Provides expert user access to:
— Device tree browsing
— Canned hardware diagnostics
— Patch scripting for bug fixes/workarounds
— Debugging tools

=<t

Configuration Variables

» Used to specify boot process options
— Default boot device and default OS to boot
— Default console device
— Control level of diagnostics to run

— Specify patches (if any) and control whether
patches should be applied

» User can define new configuration variables
e Stored in the system’s NVRAM

=<t

The “script”

» Used to store commands as though typed at
User Interface

» Automatically run during startup if
use-nvramrc? configuration variable is true

e Part of system’s NVRAM

» Stores custom extensions and/or bug
workarounds (avoids emergency ROM
upgrades!)

=<t

Underlying Technology -- Why Forth?!

Interactive environment on a constrained
system

Obvious machine-independent binary format
Built-in debugger

Extensible User Interface "for free"

Very easy to port to new machines

The entire language is always available

=<t

Forth Virtual Machine

Data Stack Return Stack

E Interpreter @

Input Stream .
put Strea) Dictionary Output Stream

(code and symbols Data Space

=<t z

Forth Language

Lexical: Blank-delimited “words”
Syntax: Very little. The basic operation of the interpreter:
— Read atoken
— Search the dictionary for the token
— If found, execute the associated code
— If not found, parse token as a number and push onto stack
— If not a number, indicate error
Compiling
— " <newname>" switches to “compile state” and begins defining <newname|
— Code is incrementally compiled instead of executed
— When compile state is ended with “;”, <newname> is entered in the diction
Data Types:
— Forth is basically untyped
— Fundamental type: integer on the stack
— Canrepresent a number, a character, an address, etc.

ary

=<t 2

=<t 25

FCode is Encoded Forth Source Code

Use the Source, Luke, for CPU Independence
Binary-encoded to Save Space

Byte-encoded to Eliminate Endianess

Each byte code means "do something now"
Normally, functions are executed immediately
“Words” (i.e. functions) can be defined for later use
Each function is very simple

Typically uses 200-5K bytes of PCl Expansion ROM

=<t 2

FCode is the General Solution

The list of properties can be extended arbitrarily
— Properties identified by name, not by “magic number”
— No central “registration service” is needed
— Property values can encode arbitrary data
Handles device hierarchies and complex configurations
— Multiple devices on one card
— Devices with hierarchical relationships
— Bus bridges
Complete programming language power
— Initialize devices
— Calculate property values
— Report dynamic characteristics
— Bootdrivers
Object-oriented, general-purpose, extensible framework
— Nota “hit list” of individual features
— New features don’t require interpreter changes or CPU firmware upgrades

FCode Interpreter

* Interpreter Loop:
— Read byte code from the device ROM
— Index into jump table to get function address
— Call function
» Compiling:
— Detect function that switches from interpreting to compiling
Read byte code from the device ROM
Index into jump table to get function address
Add function address to definition of new function
Detect function that completes definition and switches back to interpreting
New function is immediately available for use either by interpreter or comp
» The set of predefined functions forms a general-purpose programming
language (based on ANSI Forth)
» There are library functions for creating properties and other identificatio
and booting requirements

=<t -

ler

-

System ROM Support Simplifies
FCode Drivers

» “Support packages” provide common
functions for use by FCode drivers

» Standard support packages include:
— terminal emulator (bit-mapped frame buffer)
— disk label (disk)
— deblocker (tape, disk)
— obp-tftp (Ethernet, FDDI)

=<t »

What's in it for You?

* For Your Company
— Opens New Markets with the Same Hardware
— Product differentiation
— Adds Productivity to the Development Lab

— Powerful Framework for Manufacturing and
Field Service Diagnostics

What's in it for the
Firmware/Software Developer

FCode versus BIOS drivers
Top-down Design/Bottom-up Test Made Eas
Forth / Assembly Language Debugger
Open Firmware and Plug and Play
Open Firmware and ARC

Open Firmware and PCI

y

=<t »

FCode Drivers

and

BIOS Drivers

» FCode drivergion’t replace x86 BIOS
drivers (They could in theory; in practice, it
won’'t happen)

 FCode driver and x86 driver co-reside in the
same PCI Expansion ROM

e FCode driver handles non-x86 platforms

=<t

Open Firmware
and

Plug and Play
* Plug and Play - a collection of bus-depender
x86-centric point solutions

e Open Firmware - a unifying framework for
different auto-configuration technologies

* Open Firmware can use, augment and enha
ISA Plug and Play

* Open Firmware is extensible to future systen
and complicated bus topologies

=<t

c' 33

Open Firmware
and

ARC
ARC

— Scope is limited to “client interface”
— No facilities for CPU-independent plug-in drivers
— Specification appears to be encumbered

ARC “veneer” can be built above Open Firmware
services (FirmWorks has created one)

Open Firmware specification is unencumbered
Open Firmware is a complete solution

[o] | “

Open Firmware
and

PCI

PCI Open Firmware “Binding” Spec
— Builds upon IEEE “core” standard

— Defines address representations, property names, ROM
Image format for FCode, handling of cards without FCodge

x86 driver and FCode driver share Expansion ROM

Generic descriptive “properties” created from
Configuration Space header

FCode driver can create additional properties
FCode contains diagnostics and non-x86 boot codsé

A174

What's in it for the Hardware
Developer

* Open Firmware as a Bring-up Tool

— User Interface permits rapid experimentation
(“begin 4000 c@ drop key? until” = ‘scope loop)

— Demands only CPU, memory and UART be
functional to get started

— Register display and modification commands
— Breakpoints

What'sinit. ..

* For the Casual User
— Auto-configuration
— Easy customization
— Text-based or Graphical Interface
» For the Expert User/Service Person
— Consistent Interface Across Systems

— Patch High-level Language with High-level
Language

=<t

Casual User Interface (Optional)

* Booting
— boot
— boot disk
— boot /pci/scsi/disk@3,0:1

» Setting configuration options
— setenv input-device keyboard
— setenv selftest-#megs 4

=<t

Expert User Interface (Optional)

Device tree browsing

Canned hardware diagnostics
Complete Forth language interpreter
Write custom macros for hardware debugging

Store Forth scripts in non-volatile RAM
— Custom extensions
— Bug work-arounds (avoid emergency upgrades!)

=<t

=<t

More Expert User Interface

FCode Debugger

— Forth Decompiler

— Forth source-level debugger
Assembly language debugger for OS
software

— Symbolic disassembler

— Single-stepping and breakpoints

— Conditional macros

=<t

What's it Going to Cost You?

* PCI non-boot devices

— Maybe nothing

* PCI boot devices

— FCode Spoken Here
— Only One FCode Driver Required
— System ROM Support Minimizes the Job

* FCode Doesn't Replace the OS Driver

What Does it Take?

— A plug-in card needs an FCode driver in
Expansion ROM
Typical size: 200 - 5000 bytes, depending of
device type

— A CPU board needs an FCode interpreter in mai
ROM
Typical size: 64K - 256K bytes, depending on
the number of optional features (debugging tools
etc.) included

* To comply with the PCI Open Firmware Speg

—

=<t

Simple FCode Program

fcode-version2

“ MYCO,tty” name

“ MYCO,123456-01" model
my-address my-space 8 reg

“ serial” device_type

6 encode-int “ interrupts” property
<method definitions go here>

endO

=<t

Simple FCode Methods

0 instance value chipaddr

:open (--flag)
my-address my-space 8 “ map-in” $call-parent to
chipaddr true

: close (--) chipaddr 8 “ map-out” $call-parent ;
:read (addrlen-- actual) drop chipaddr rb@ swap c! 1

> write (‘addr len -- actual)
tuck bounds ?do i c@ chipaddr rb! loop

=<t -

Developing FCode Drivers - Tools

» Open Firmware debugger

— Source-level debugger - interactive execution, incremental
compiler/decompiler, source-level tracing

— Some Open Firmware ROMs have it built-in
— Versions that run under an OS are available
» Tokenizer
— Converts Forth source to FCode binary format
— Inexpensive
Detokenizer
— Converts FCode binary programs back to source form
Cross Platform Developer's Kit

— Provides development environment before hosts are generally
available

=<t “

Developing FCode Drivers - Process

Convert to binary
with tokenizer
Serial

download
(source)

Program ROMs,
final test

Edit source code
I with text editor I
Test in source form

on real hardware

* Develop and debug at source level
» Tokenize to binary for final delivery

. Decompile, debug Apply source-level o
Problem r')n in source form field patch Home in time
the field? on real hardware in NVRAM for supper

p Decompile, override, and patch for field support

=<t -

FCode Development Resources

* |EEE 1275-1994 Standard for Boot (Initialization
Configuration) Firmware, Core Requirements and
Practices

» PCI Open Firmware “Binding” Spec.

» "Writing FCode Drivers for PCI"

* "Open Firmware Command Reference"

* "Open Firmware Quick Reference Card"

» Cross-Platform Developer’s Kit

» Class: “Writing FCode Drivers” (includes Forth language)
» Off-the-shelf drivers

» Third party services - drivers, training, porting, compliance
testing (e.g. FirmWorks)

=<t w

Standard Documents

e Core document:

— Standard 1275-1994: |EEE Standard for Boot
(Initialization Configuration) Firmware: Core
Requirements an Practices. US$87. Order
Number SH17327.

— |IEEE Customer Service
From the US and Canada: 1-800-678-4333
From elsewhere: +1-908-981-1393
Fax: +1-908-981-9667

Standard Documents

* Binding documents:
— ~ 10 pages each
— Define specifics for particular CPUs, buses
— Some published by IEEE (1275.1, ...)
— Others published by consortia (e.g. PCI SIG)
— PCI, SPARC, 680x0, VME, Futurebus+, ...

— Latest PowerPC and PCI bus bindings available
via anonymous ftp from playground.sun.com in
the directory /pub/p1275/bindings/postscript

Summary

The Last Piece of the Open Systems Puzzle
Powerful, Extensible Technology

Speeds Development

Increases User Friendliness

For More Information

e Contact:

Greg Hill

FirmWorks

480 San Antonio Road, Suite 230
Mountain View, CA 94040-1218

Phone: 415-917-6985 / 415-917-0100
FAX: 415-917-6990
Email: gregh@firmworks.com / info@firmworks.com

_Ec' 50

