
1

Expanding Your Market
with Open Firmware

Greg Hill

Director of Marketing

FirmWorks

gregh@firmworks.com

2

Agenda

• Why Have Open Firmware

• What is Open Firmware

• The Good News -- The Benefits of Open
Firmware

• The Bad News -- The Costs of Open
Firmware

• Open Firmware Development Resources

• Conclusion

3

Who’s On First?

• In a recent quarter, which computer vendor
had the largest market share?
– Apple with about 12%

– Compaq with about 12%

– IBM with about 12%

– All of the above

4

Who’s On PCI with Open
Firmware?

• Apple with the Power Macintosh™

• IBM with PR*P (coming soon)

• Do you want a piece of the action?

Power Macintosh is a trademark of Apple Computer Inc.

5

What Problems Does Open
Firmware Solve?

• No Standards
– Proprietary Solutions

– Machine-dependent Interfaces

– Inconsistent User Interfaces

– Re-invention of the Wheel

• Ad Hoc Design
– Cumbersome/inflexible OS Interfaces

– Weak Naming Structure

6

What Problems Does Open
Firmware Solve?

• No Open Systems Support
– Single-vendor boot/diagnostic support

– CPU dependencies

– Weak or nonexistent auto-configuration mechanisms

• Constrained environment
– Firmware environment can't depend on full machine

capabilities

– Meager debugging tool set

• Expensive to maintain and upgrade

7

The Open Firmware Response
• Unencumbered Public Specification (IEEE 1275-

1994)
– The interfaces are open and public - no fees, restrictions

or "contamination" concerns

– Companies may sell or license specific implementations

– Buy off-the-shelf or build from the spec -- your choice

• Designed for the long term
– Structured OS Interfaces

– Explicit reporting of resource utilization

– Unambiguous hierarchical naming structure

– Architected extensibility for future growth

8

The Open Firmware Response

• Open Systems Orientation
– CPU-independent, bus-independent design

– Device name space supports arbitrary
combinations of different buses

– Architecture-neutral interfaces

– Multi-vendor booting, testing

• Auto-configuration Support
– "Plug and play" across different processors

with ONE driver

9

The Open Firmware Response

• Debugging Facilities
– Standard Firmware-level Debug Interface

– Built-in interactive programming language

– Hardware, software, firmware, driver
debugging tools

• Field Patches, Upgrades
– Downloadable firmware extensions

– Extensions and patches in non-volatile RAM

10

Open Firmware Interfaces

• Device Interface - plug-in “FCode” drivers

• User Interface - administration and debugging

• Client Interface - services for OS and loaders

• The 3 interfaces are separately optional

User Interface Client Interface

Device Tree

Open Firmware

Client Program -

Operating System

Expansion Bus

Expansion Bus

Network

Device Interface

or its loader

11

Device Interface (FCode)

• FCode interpreter/compiler runs on the main CPU

• FCode programs reside in PCI Expansion ROMs on
peripheral cards (can be stored elsewhere for some buses)

• During system start-up, Open Firmware “probes” the bus and
reads/interprets any FCode it finds

• Resulting driver used during start-up

Standard Bus

Open
Firmware

ROM FCode
ROM

Device
Hardware

RAM

CPU

CPU Board Peripheral Board

12

Device Interface (FCode)

• Interpreting/compiling an FCode program:
– Creates a device node with descriptive properties

– Creates device driver methods in RAM

– Initializes and tests the device

• The same FCode driver works with any CPU

• FCode drivers don’t replace OS drivers
– OS drivers are complicated; FCode drivers are simple

– OS and loaders can use FCode drivers temporarily

13

Building the Device Tree

• Start with tree for built-in devices
For each occupied slot:
Create an empty device node

Interpret FCode for that board

(if the device is a bridge), recurse
For each occupied slot:

Create an empty device node

Interpret FCode for that board

(if the device is a bridge), recurse

(etc.)

14

Device Tree

• The Device Tree maps the hardware’s physical addressing

• The tree structure is the key to portability and extensibility

• Nodes with children are usually buses

• Nodes without children are usually individual devices

• Siblings are distinguished by name and by physical address

/
(cpu bus)

memory
pci

packages

display
scsi

disk tape

deblocker

15

Device Node

• Properties - name,value pairs describing the
device

• Methods - driver procedures for the device

childchildchild

descriptive properties

driver methods
&

initialized data

parent

16

Properties
• Name,value pairs describing device characteristics

• Some standard properties

– “name” Human-readable device name used
 in paths

– “reg” List of address ranges for registers

– “interrupts” List of interrupt levels and/or
 vectors

• Some properties are class-dependent, e.g. “width”

• Other device-dependent properties can be created

• PCI “binding” defines some PCI-specific properties

17

Methods
• Forth procedures for driving the device

• Called by name - run-time binding

• Some standard methods:
– “open” , “close” Start/stop using device

– “ read” , “write” Input/Output

– “load” Load a program from the
device

• Bus nodes provide mapping and DMA
methods their children can use

18

Client Program Interface
• Allows the operating system (or OS loader) to

use Open Firmware services

• Device tree access (for OS auto-configuration)
– Select a device node

– Get and set property values

• FCode driver access
– Console I/O

– Disk, tape, network (for secondary booters)

• Memory allocation and mapping

19

User Interface

• Provides casual user access to:
– Booting commands

– Configuration variables

• Provides expert user access to:
– Device tree browsing

– Canned hardware diagnostics

– Patch scripting for bug fixes/workarounds

– Debugging tools

20

Configuration Variables

• Used to specify boot process options
– Default boot device and default OS to boot

– Default console device

– Control level of diagnostics to run

– Specify patches (if any) and control whether
patches should be applied

• User can define new configuration variables

• Stored in the system’s NVRAM

21

The “script”

• Used to store commands as though typed at
User Interface

• Automatically run during startup if
use-nvramrc? configuration variable is true

• Part of system’s NVRAM

• Stores custom extensions and/or bug
workarounds (avoids emergency ROM
upgrades!)

22

Underlying Technology -- Why Forth?!

• Interactive environment on a constrained
system

• Obvious machine-independent binary format

• Built-in debugger

• Extensible User Interface "for free"

• Very easy to port to new machines

• The entire language is always available

23

Forth Virtual Machine
Return Stack

 Dictionary
(code and symbols Data Space

Interpreter

Data Stack

Output Stream
Input Stream

24

Forth Language
• Lexical: Blank-delimited “words”

• Syntax: Very little. The basic operation of the interpreter:
– Read a token

– Search the dictionary for the token

– If found, execute the associated code

– If not found, parse token as a number and push onto stack

– If not a number, indicate error

• Compiling
– “: <newname>” switches to “compile state” and begins defining <newname>

– Code is incrementally compiled instead of executed

– When compile state is ended with “;”, <newname> is entered in the dictionary

• Data Types:
– Forth is basically untyped

– Fundamental type: integer on the stack

– Can represent a number, a character, an address, etc.

25

FCode is Encoded Forth Source Code

• Use the Source, Luke, for CPU Independence

• Binary-encoded to Save Space

• Byte-encoded to Eliminate Endianess

• Each byte code means "do something now"

• Normally, functions are executed immediately

• “Words” (i.e. functions) can be defined for later use

• Each function is very simple

• Typically uses 200-5K bytes of PCI Expansion ROM

26

FCode is the General Solution
• The list of properties can be extended arbitrarily

– Properties identified by name, not by “magic number”

– No central “registration service” is needed

– Property values can encode arbitrary data

• Handles device hierarchies and complex configurations
– Multiple devices on one card

– Devices with hierarchical relationships

– Bus bridges

• Complete programming language power
– Initialize devices

– Calculate property values

– Report dynamic characteristics

– Boot drivers

• Object-oriented, general-purpose, extensible framework
– Not a “hit list” of individual features

– New features don’t require interpreter changes or CPU firmware upgrades

27

FCode Interpreter
• Interpreter Loop:

– Read byte code from the device ROM

– Index into jump table to get function address

– Call function

• Compiling:
– Detect function that switches from interpreting to compiling

– Read byte code from the device ROM

– Index into jump table to get function address

– Add function address to definition of new function

– Detect function that completes definition and switches back to interpreting

– New function is immediately available for use either by interpreter or compiler

• The set of predefined functions forms a general-purpose programming
language (based on ANSI Forth)

• There are library functions for creating properties and other identification
and booting requirements

28

System ROM Support Simplifies
FCode Drivers

• “Support packages” provide common
functions for use by FCode drivers

• Standard support packages include:
– terminal emulator (bit-mapped frame buffer)

– disk label (disk)

– deblocker (tape, disk)

– obp-tftp (Ethernet, FDDI)

29

What's in it for You?

• For Your Company
– Opens New Markets with the Same Hardware

– Product differentiation

– Adds Productivity to the Development Lab

– Powerful Framework for Manufacturing and
Field Service Diagnostics

30

What’s in it for the
Firmware/Software Developer

• FCode versus BIOS drivers

• Top-down Design/Bottom-up Test Made Easy

• Forth / Assembly Language Debugger

• Open Firmware and Plug and Play

• Open Firmware and ARC

• Open Firmware and PCI

31

FCode Drivers
and

BIOS Drivers

• FCode drivers don’t replace x86 BIOS
drivers (They could in theory; in practice, it
won’t happen)

• FCode driver and x86 driver co-reside in the
same PCI Expansion ROM

• FCode driver handles non-x86 platforms

32

Open Firmware
and

 Plug and Play

• Plug and Play - a collection of bus-dependent,
x86-centric point solutions

• Open Firmware - a unifying framework for
different auto-configuration technologies

• Open Firmware can use, augment and enhance
ISA Plug and Play

• Open Firmware is extensible to future systems
and complicated bus topologies

33

Open Firmware
and

ARC
• ARC

– Scope is limited to “client interface”

– No facilities for CPU-independent plug-in drivers

– Specification appears to be encumbered

• ARC “veneer” can be built above Open Firmware
services (FirmWorks has created one)

• Open Firmware specification is unencumbered

• Open Firmware is a complete solution

34

Open Firmware
and

PCI
• PCI Open Firmware “Binding” Spec

– Builds upon IEEE “core” standard

– Defines address representations, property names, ROM
Image format for FCode, handling of cards without FCode

• x86 driver and FCode driver share Expansion ROM

• Generic descriptive “properties” created from
Configuration Space header

• FCode driver can create additional properties

• FCode contains diagnostics and non-x86 boot code

35

What’s in it for the Hardware
Developer

• Open Firmware as a Bring-up Tool
– User Interface permits rapid experimentation

(“begin 4000 c@ drop key? until” = ‘scope loop)

– Demands only CPU, memory and UART be
functional to get started

– Register display and modification commands

– Breakpoints

36

What’s in it . . .

• For the Casual User
– Auto-configuration

– Easy customization

– Text-based or Graphical Interface

• For the Expert User/Service Person
– Consistent Interface Across Systems

– Patch High-level Language with High-level
Language

37

Casual User Interface (Optional)

• Booting
– boot

– boot disk

– boot /pci/scsi/disk@3,0:1

• Setting configuration options
– setenv input-device keyboard

– setenv selftest-#megs 4

38

Expert User Interface (Optional)

• Device tree browsing

• Canned hardware diagnostics

• Complete Forth language interpreter

• Write custom macros for hardware debugging

• Store Forth scripts in non-volatile RAM
– Custom extensions

– Bug work-arounds (avoid emergency upgrades!)

39

More Expert User Interface

• FCode Debugger
– Forth Decompiler

– Forth source-level debugger

• Assembly language debugger for OS
software
– Symbolic disassembler

– Single-stepping and breakpoints

– Conditional macros

40

What's it Going to Cost You?

• PCI non-boot devices
– Maybe nothing

• PCI boot devices
– FCode Spoken Here

– Only One FCode Driver Required

– System ROM Support Minimizes the Job

• FCode Doesn't Replace the OS Driver

41

What Does it Take?
• To comply with the PCI Open Firmware Spec

– A plug-in card needs an FCode driver in
Expansion ROM
Typical size: 200 - 5000 bytes, depending of
device type

– A CPU board needs an FCode interpreter in main
ROM
Typical size: 64K - 256K bytes, depending on
the number of optional features (debugging tools,
etc.) included

42

Simple FCode Program

fcode-version2

“ MYCO,tty” name

“ MYCO,123456-01” model

my-address my-space 8 reg

“ serial” device_type

6 encode-int “ interrupts” property

<method definitions go here>

end0

43

Simple FCode Methods
0 instance value chipaddr

: open (-- flag)

 my-address my-space 8 “ map-in” $call-parent to
 chipaddr true

;

: close (--) chipaddr 8 “ map-out” $call-parent ;

: read (addr len -- actual) drop chipaddr rb@ swap c! 1
;

: write (addr len -- actual)

 tuck bounds ?do i c@ chipaddr rb! loop

;

44

Developing FCode Drivers - Tools

• Open Firmware debugger
– Source-level debugger - interactive execution, incremental

compiler/decompiler, source-level tracing

– Some Open Firmware ROMs have it built-in

– Versions that run under an OS are available

• Tokenizer
– Converts Forth source to FCode binary format

– Inexpensive

• Detokenizer
– Converts FCode binary programs back to source form

• Cross Platform Developer’s Kit
– Provides development environment before hosts are generally

available

45

Developing FCode Drivers - Process

• Develop and debug at source level

• Tokenize to binary for final delivery

Edit source code
with text editor

Test in source form
on real hardware

Serial
download
(source)

Convert to binary
with tokenizer

ρ Decompile, override, and patch for field support

Decompile, debug
in source form

on real hardware

Problem in
the field?

Apply source-level
field patch
in NVRAM

Program ROMs,
final test

Home in time
for supper

46

FCode Development Resources
• IEEE 1275-1994 Standard for Boot (Initialization

Configuration) Firmware, Core Requirements and
Practices

• PCI Open Firmware “Binding” Spec.

• "Writing FCode Drivers for PCI"

• "Open Firmware Command Reference"

• "Open Firmware Quick Reference Card"

• Cross-Platform Developer’s Kit

• Class: “Writing FCode Drivers” (includes Forth language)

• Off-the-shelf drivers

• Third party services - drivers, training, porting, compliance
testing (e.g. FirmWorks)

47

Standard Documents

• Core document:
– Standard 1275-1994: IEEE Standard for Boot

(Initialization Configuration) Firmware: Core
Requirements an Practices. US$87. Order
Number SH17327.

– IEEE Customer Service
From the US and Canada: 1-800-678-4333
From elsewhere: +1-908-981-1393
Fax: +1-908-981-9667

48

Standard Documents

• Binding documents:
– ~ 10 pages each

– Define specifics for particular CPUs, buses

– Some published by IEEE (1275.1, ...)

– Others published by consortia (e.g. PCI SIG)

– PCI, SPARC, 680x0, VME, Futurebus+, ...

– Latest PowerPC and PCI bus bindings available
via anonymous ftp from playground.sun.com in
the directory /pub/p1275/bindings/postscript

49

Summary

• The Last Piece of the Open Systems Puzzle

• Powerful, Extensible Technology

• Speeds Development

• Increases User Friendliness

50

For More Information

• Contact:

Greg Hill
FirmWorks
480 San Antonio Road, Suite 230
Mountain View, CA 94040-1218

Phone: 415-917-6985 / 415-917-0100
FAX: 415-917-6990
Email: gregh@firmworks.com / info@firmworks.com

